skip to main content


Search for: All records

Creators/Authors contains: "Maxwell, Justin T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the response of tropical cyclone precipitation to ongoing climate change is essential to determine associated flood risk. However, instrumental records are short-term and fail to capture the full range of variability in seasonal totals of precipitation from tropical cyclones. Here we present a 473-year-long tree-ring proxy record comprised of longleaf pine from excavated coffins, a historical house, remnant stumps, and living trees in southern Mississippi, USA. We use cross-dating dendrochronological analyses calibrated with instrumental records to reconstruct tropical cyclone precipitation stretching back to 1540 CE. We compare this record to potential climatic controls of interannual and multidecadal tropical cyclone precipitation variability along the Gulf Coast. We find that tropical cyclone precipitation declined significantly in the two years following large Northern Hemisphere volcanic eruptions and is influenced by the behavior of the North Atlantic subtropical high-pressure system. Additionally, we suggest that tropical cyclone precipitation variability is significantly, albeit weakly, related to Atlantic multidecadal variability. Finally, we suggest that we need to establish a network for reconstructing precipitation from tropical cyclones in the Southeast USA if we want to capture regional tropical cyclone behavior and associated flood risks.

     
    more » « less
  2. The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.

     
    more » « less
  3. Across forests, photosynthesis and woody growth respond to different climate cues. 
    more » « less
  4. Despite growing in wet lowland and riparian settings, Taxodium distichum (L.) Rich. (bald cypress) has a strong response to hydroclimate variability, and tree ring chronologies derived from bald cypress have been used extensively to reconstruct drought, precipitation and streamflow. Previous studies have also demonstrated that false rings in bald cypress appear to be the result of variations in water availability during the growing season. In this study 28 trees from two sites located adjacent to the Choctawhatchee River in Northwestern Florida, USA were used to develop a false ring record extending from 1881 to 2014. Twenty false ring events were recorded during the available instrumental era (1931–2014). This record was compared with daily and monthly streamflow data from a nearby gage. All 20 of the false-ring events recorded during the instrumental period occurred during years in which greatly increased streamflow occurred late in the growing season. Many of these wet events appear to be the result of rainfall resulting from landfalling tropical cyclones. We also found that the intra-annual position of false rings within growth rings reflects streamflow variability and combining the false-ring record with tree ring width chronologies improves the estimation of overall summer streamflow by 14%. Future work using these and other quantitative approaches for the identification and measurement of false ring variables in tree rings may improve tree-ring reconstructions of streamflow and potentially the record of tropical cyclone rainfall events. 
    more » « less
  5. Abstract

    Since 2013, extreme floods within the Santee River basin (North/South Carolina, USA) caused $1.5B in damage. The instrumental period, however, is too short to determine if recent extreme events are anomalous within a long‐term context. Here, we present reconstructions of storm‐, base‐, and total streamflow for the Santee River using a multi‐species tree‐ring network calibrated to flow data during the period 1923–2018. Tree‐ring data explained higher variance (r = 0.59;p < 0.01; 900–2018) of instrumental baseflow than total streamflow (r = 0.41;p < 0.01; 1500–2018) or stormflow (r = 0.26;p < 0.05; 1690–2018). Our reconstruction reveals a long‐term increase in baseflow over the past millennium. The North Atlantic subtropical high regulates baseflow in the Santee River (r = 0.45;p < 0.01). Recent high levels of baseflow may be connected to the position of the subtropical high, increasing the likelihood of flooding.

     
    more » « less